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1 Introduction

Long term memory in financial data has been a common subject of empirical
research. Mandelbrot (1971) was among the first to study the implications. It
has been referred to as the ‘Joseph effect’” by Mandelbrot and Wallis (1968) in
relation to the story of Joseph who foretold a seven years of plenty followed by
seven years of drought in Egypt in the Old Testament and the Koran. Mathe-
matically long term memory can be defined as the presence of autocorrelations at
long lags which die slowly. It is a phenomenon which has been widely observed
and documented in hydrology, meteorology and other natural sciences hence it is
not surprising that financial time series also exhibit long term dependence. The
presence of this dependence implies that market prices do not react immediately
to information and thus past returns can be used to predict future returns. This in
turn raises questions about the validity of the Efficient Market Hypothesis (EMH)
which underlies most of modern day financial economics. Indeed martingale based
derivative pricing theory which depends on efficient memoryless financial markets
stands invalidated in the presence of long term memory. Similarly investment de-
cisons tend to become more sensitive to investment horizons in the presence of
long term dependence. Presence of long term memory in returns highlights the
need for non-linear pricing models as opposed to the common linear ones. Hence
it is imperative to understand the presence of long term dependence in financial
markets before embarking on investment decisions particularly those dependent
on martingale pricing methods.

2 Long term memory

A process is said to exhibit long term memory if its autocorrelation function decays
at a hyperbolic rate thus making it un-integrable. The autocorrelation function



for such a stationary process looks like:
p(k) = C,k™%as k — o0

where p(k) is the autocorrelation at lag k, C, is a positive constant and « is real
number between 0 and 1. A smaller value for @ means more long term memory in
the process.

H, the Hurst exponent is defined as:

H=1-qa/2

H is linearly related to a and a higher value of H means higher long term
memory in the process. The usual method is to calculate H rather than a. H has
usually been calculated using the R/S statistic. This statistic was used by Hurst in
1951 to test for long term memory in the flooding of the Nile. It was later modified
but basically it compares the minimum and maximum values of running sums of
deviation from the sample mean. The sums are standardised by dividing them
by the sample standard deviation. More details of the R/S statistic along with
its relative merits and demerits can be found in Mandelbrot and Wallis (1969a),
Mandelbrot and Taqqu (1979) and Lo(1991). The R/S statistic is calculated as
follows:
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where y; is the observed time series upto time T’
Lo (1991) showed that asymptotically the R/S statistic follows:
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where ¢ is a constant. This can be written as
R
log—T = logc + HlogT
ST

Hence H can be estimated using simple linear regression. If Ry is a simple random



walk (RW) then the plot is a straight line with slope 0.5. If the returns have long
term memory the slope is >0.5, in case of anti-persistence or negative long term
dependence the slope is <0.5. However, Weron (2002) mentions that for small T’
there can be significant deviation from 0.5 for RW and hence the R/S statistics
for RW is approximated by
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where T" is the Euler gamma function. H is thus calculated as 0.5 plus Ry/sp —
E(Rr/sr). Lo(1991) provided a different adjustment to the R/S statistic however
this paper uses the Weron (2002) adjustment specified above.

A long term memory process can also be modelled using a fractional Auto
Regressive Integrated Moving Average (FARIMA or ARFIMA) process i.e between
stationary and unit root process. It can mean revert like a process with finite
memory but unlike the autoregressive stationary process it decays at the hyperbolic
rate which is much slower than the exponential decay. Hence it takes a longer time
to return to equilibrium. A time series with unit root at level but stationary at
first difference is called (1) process. A stationary process is called 1(0). A long
memory process (ARFIMA) is I(d), where d lies between 0 and 1. An ARFIMA
process of order (p,d,q) with mean p can be written as:

O(L)(1 - L)y, — p) = O(L)ey,
where y; is the observed time series,
e ~ id(0,0%),

L is the lag operator, '
L'y = yi—j,
OL)=1-¢L—.....—¢,L,,
OL)=14+ML+.....4+ )\,
and (1 — L) is the fractional differencing operator defined by
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d can be any real number. For standard ARIMA models d is an integer. The



process y; is stationary and invertible if the roots of ®(L) and ©(L) lie outside the
unit circle and |d| < 0.5. For d:
(i) between 0 and 0.5, the ARFIMA process is persistent and exhibits long term
memory. The autocorrelations are all positive and decay hyperbolically to zero as
the lag length increases. It also implies that the market inefficiency
(ii) between -0.5 and 0 the process is anti-persistent and exhibits intermediate or
negative long term dependence. The autocorrelations are all negative, and implies
an ultra-efficient market
(iii) equal to O the process exhibits short memory and is the standard ARMA
process

The parameter d can be determined by using maximum likelihood estimation.
This paper uses the method described by Haslett and Raftery (1989).

There are many ways to test for long term dependence, the analysis here es-
timates both H and d using the methods described. For a time series with long
term memory, d = H — 0.5 (Mukherjee et al 2011). If the analysis is consistent
the estimates of H and d should be consistent with this relationship.

3 Previous studies on long term memory in financial markets

Lo (1991) carried out an analysis of long term memory on the US data and found
no evidence of long term memory in the returns. Similar studies were carried out
for other developed markets and there was no evidence for long term memory.

Emerging markets are a good source of diversification for asset managers. Tra-
ditionally these markets have been seen as inefficient and thus expected to display
significant long term memory. Recent studies carried out for some of these reported
evidence of long term memory for example Greece (Barkaoulas et al (2000)) and
Finland (Tolvi (2003)). Surprisingly, the stock market returns in India did not
exhibit any long term memory according to a recent paper by Mukherjee, Sen and
Sarkar (2011).

This paper carries out an analysis of long term memory in the stock returns
in Pakistan using the Karachi Stock Exchange 100 (KSE100) Index. Results are
also produced for the US market using S&P500 data to contrast and compare with
those of the KSE100. The paper analyses the raw returns as well as the absolute
and squared-return data. The presence of long term memory in the raw return
implies that quantitative trading strategies can be set up to profit from market
inefficiency



Weekly returns || KSE100 | S&P500
Mean || 0.28% 0.06%
Stand. deviation || 3.88% 2.68%
Skewness -0.96 -0.71
Kurtosis 3.44 5.51

Table 1: Summary statistics

4  Statistical Analysis

The analysis is carried out in R Project. This is a statistical software which is
freely available on the internet and widely used by statisticians. R has a function
to calculate the Hurst exponent using the R/S analysis. This function uses the
methodology defined in Weron(2002) There is also a function to calculate the
maximum likelihood estimators (MLE) of an ARFIMA model. The likelihood is
approximated using the method described in Haslett and Raferty (1989).

4.1 Data and summary statistics

Weekly index prices from July 1997 till October 2012 for the KSE100 and S&P500
have been taken from Yahoo finance. The (local currency) return R; for each
dataseries is calculated as the difference is log index prices:

Ry =In(P)-In(P—y)

Table 1 shows the weekly return statistics. As expected KSE100 has the higher
average weekly return with higher volatility, measured as the standard deviation
of return. Both the indices exhibit high skewness and kurtosis.
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Figure 1: Weekly index prices from 2 July 1997 to 20 September 2012
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Figure 2: Comparing the index return distributions with a normal density (black
line)



Figure 3: Weekly returns

Figure 1 shows the weekly levels of the KSE100 and S&P500 indices since
1997. The two appear to stationarity and there is no obvious trend in the indices.
Stationary is tested statistically later.

Figure 2, illustrates the effect of negative skewness and high kurtosis. The red
histograms show the weekly return distribution and the black line represents the
density of a normal distribution with mean and standard deviation similar to the
relevant index. The tails for the actual returns are heavier than we would expect
under normally distributed returns. The KSE100 data displays higher skewness
and heavier tails as borne out by the statistics in Table 1.

Figure 3 shows the weekly returns for the two markets. The return on the
KSE100 appears to be more volatile as borne out by the higher standard deviation
of returns in Table 1. There appears to be periods of high volatility followed by
periods of relatively lower volatility i.e. volatility clustering in both the KSE100
and S&P500.

4.2 Analysis of long term memory in raw returns

The section analyses the KSE100 and S&P500 for long term memory in the raw
returns. We first test for stationarity in the time series, then visually inspect the
ACF for long term memory (i.e. slow decaying ACF) and finally apply the long
term memory tests.

4.2.1 Augmented Dickey-Fuller (ADF) Test of stationarity

The(ADF) procedure is used to test the stationarity of the time series. Stationarity
in the time series is important as we can apply the long term memory analysis
to a stationary time series. The Augmented Dickey Fuller test is used to check
stationarity in the time series and the results showed that both the KSE100 and
S&P500 are stationary (at the 10% significance level). The output from R is in
the appendix.

4.2.2 Visual inspection of the Auto Correlation Functions (ACF)

Graph 3 shows the ACFs of the two time series for weekly returns. The graphs
show that there might be some long term memory in the KSE100 returns but
probably not in the S&P500 return series. The blue lines represent the confidence
intervals. Significant autocorrelations lie outside the interval.
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Figure 3: Autocorrelations

Market || Hurst Exponent
KSE100 0.618
S&P500 0.50

Table 2: Empirical Hurst exponents

4.3 Long term memory tests

This tests for the presence of long term memory in the time series.

4.3.1 Hurst exponent using the R/S statistic

This tests for the presence of long term memory in the time series. The empirical
Hurst exponents (H) for the two time series are shown in Table 2

If H = 0.5 there is no evidence of long term memory in the process. The
S&P500 has H equal to 0.5 suggesting the absence of long term memory. This was
also shown by the visual ACF evidence. KSE100 has a higher H thus exibiting

stronger longer term memory.

4.3.2 ARFIMA test

This section tests for the presence of the fractional difference component d in the
ARFIMA model using the MLE method mentioned before. The analysis produces




Market || Lower limit | Higher limit
KSE100 0.1350 0.1352
S&P500 || 9.787e~Y° 9.187e~%

Table 3: Confidence interval for the fractional difference parameter d

o M“T{T o MH M Tt ‘ [ ‘ h | } Th

Figure 4: Autocorrelations of absolute returns
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Table 3 shows that d is very close to 0 for S&P500 suggesting the absence
of long term memory in the S&P500 returns as shown by the preceding analysis
here and in Lo(1991). There is however significant long term memory in the
KSE100 returns. It is also important to note that d and H satisfy the relationship
mentioned previously i.e. d ~ H — 0.5.

4.4 Analysis of long term memory in absolute and squared returns

Absolute and squared return data is used as a measure of volatility in the data.
This analysis looks at the presence of long term memory in return volatility.
Figures 4 and 5 show the ACF's for the absolute and squared returns for KSE100
and S&P500. The slow decaying ACFs suggest the presence of long term memory
in volatility (as measured by absolute and squared return proxies)
Table 4 shows the empirical Hurst coefficients for the different markets. The
numbers for the Indian market are taken from Mukherjee, Sen and Sarkar (2011).
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Figure 5: Autocorrelations of squared returns

Market || H(absolute returns) | H(squared returns)
KSE100 0.83 0.83
S&P500 0.57 0.56

India SENSEX 0.68 0.70

Table 4: Hurst coefficients for absolute and squared returns
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The authors found that the Indian SENSEX market does not exhibit long term
memory, however the absolute and squared returns do have long term memory.
We would thus expect the SENSEX to lie between S&P500 and KSE100 in terms
of market efficiency. The numbers in Table 4 seem to place the SENSEX in that
range in terms of the long term memory in the volatility proxies.

5 Conclusion

The analysis shows the presence of a long term memory in the raw KSE100 returns.
The KSE100 return data has a slow decaying ACF and the return is influenced by
both recent and remote history. This is in contrast with the returns in the more
efficient S&P500. This is an important distinction between emerging markets like
the KSE100 and developed market such as the S&P500.

The long term dependence is even stronger in the absolute and squared returns
implying that KSE100 volatility exhibits long term memory. Even the S&P500
return volatility exhibits long term dependence. This result is in line with the
commonly observed volatility clustering in stock market data as shown in Figure
3.

The presence of long term memory suggests that better return forecasts can be
made by building non-linear models for KSE100. Barkoulas, Baum and Travlos
(2000) did this and compared forecasts of non-linear ARFIMA models with those
of simple Random Walk and linear AR models for the Greek stock market and
found that the ARFIMA models provided better forecasts. This establishes the
usefulness of building non-linear models for emerging markets such as KSE100
which exhibit long term memory. Indeed long term dependence in the market
means that better forecasting techniques can be used to generate higher returns
and/or reduce volatility for funds invested in KSE100.
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6 Appendix- R Output

x - KSE100 raw returns

x1 - S\&P500 raw returns

xx — KSE100 absolute returns
xx1- S\&P500 absolute returns
xxx — KSE100 squared returns
xxx1 - S\&P500 squared returns

ADF test of stationarity
> adf.test(x)

Augmented Dickey-Fuller Test

data: x
Dickey-Fuller = -8.2506, Lag order = 9, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(x) : p-value smaller than printed p-value
> adf.test(xx)

Augmented Dickey-Fuller Test

data: xx
Dickey-Fuller = -7.6019, Lag order = 9, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(xx) : p-value smaller than printed p-value
> adf.test (xxx)

Augmented Dickey-Fuller Test
data: =xxx
Dickey-Fuller = -7.2661, Lag order = 9, p-value = 0.01
alternative hypothesis: stationary
Warning message:

In adf.test(xxx) : p-value smaller than printed p-value
> adf.test(x1)
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Augmented Dickey-Fuller Test

data: x1
Dickey-Fuller = -9.1677, Lag order = 9, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(xl) : p-value smaller than printed p-value
> adf.test(xx1)

Augmented Dickey-Fuller Test

data: xx1
Dickey-Fuller = -6.446, Lag order = 9, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(xxl) : p-value smaller than printed p-value
> adf.test (xxx1)

Augmented Dickey-Fuller Test

data: xxx1
Dickey-Fuller = -7.1291, Lag order = 9, p-value = 0.01
alternative hypothesis: stationary

Warning message:
In adf.test(xxxl) : p-value smaller than printed p-value

Hurst exponent
> hurstexp(x)
Corrected R over S Hurst exponent: 0.6034453

Theoretical Hurst exponent: 0.5398235
Corrected empirical Hurst exponent: 0.5816325
Empirical Hurst exponent: 0.6182045

> hurstexp(x1)
Corrected R over S Hurst exponent: 0.623938
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Theoretical Hurst exponent: 0.5250791
Corrected empirical Hurst exponent: 0.533264
Empirical Hurst exponent: 0.5004422
Warning message:
In matrix(x, n, m)
data length [792] is not a sub-multiple or multiple of the number of rows [61]

> hurstexp (xx)

Corrected R over S Hurst exponent: 0.7388683
Theoretical Hurst exponent: 0.5398235
Corrected empirical Hurst exponent: 0.7906822
Empirical Hurst exponent: 0.8314759

> hurstexp(xx1)

Corrected R over S Hurst exponent: 0.8234984
Theoretical Hurst exponent: 0.5250791
Corrected empirical Hurst exponent: 0.5934594
Empirical Hurst exponent: 0.5682212

Warning message:
In matrix(x, n, m)
data length [792] is not a sub-multiple or multiple of the number of rows [61]

> hurstexp (xxx)

Corrected R over S Hurst exponent: 0.7147583
Theoretical Hurst exponent: 0.5398235
Corrected empirical Hurst exponent: 0.7856645
Empirical Hurst exponent: 0.828376

> hurstexp (xxx1)
Corrected R over S Hurst exponent: 0.7177272
Theoretical Hurst exponent: 0.5250791
Corrected empirical Hurst exponent: 0.5890543
Empirical Hurst exponent: 0.5633297
Warning message:
In matrix(x, n, m)
data length [792] is not a sub-multiple or multiple of the number of rows [61]

Estimation of Fractional differencing parameter

> ts.test<-fracdiff(x,
+ar = 2, ma = 0,
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+ dtol = NULL, drange = c(0, 0.5), M = 100, trace = 0)

vV + + V

Q.

confint(ts.test)
2.5% 97.5 Y%
0.1351012 0.135161

ts.testl<-fracdiff (x1,
ar = 0, ma = 0,
dtol = NULL, drange = c(0, 0.5), M = 100, trace = 0)
confint (ts.testl)
2.5 % 97.5 %
9.78762e-06 8.187264e-05
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