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1 Introduction

Credit risk is the risk of financial loss due to a debtor’s default on a loan. The
risk emanates from both actual and perceived defaults. Central to credit risk is
the modelling of the default event. There has been a lot of academic interest
in modelling credit risk and consequently there exists a vast body of literature.
Moreover the credit crisis of 2008 sparked a renewed interest amongst market
practitioners and regulators.

There exist two distinctly parallel worlds in credit risk mainly due to the di-
chotomy of data availability in the financial markets:

1. direct measurements of credit performance such as downgrades and defaults
and

2. credit performance implied by corporate bond prices.

This distinct form of data focus has led to two distinct streams of data modelling.
One is the world of physical credit defaults whereas the other is the world of
implied default risk. Credit rating agencies such as Moody’s and credit scoring
agencies in consumer lending have traditionally been more interested in the world
of actual (historical) credit defaults. However, the bulk of academic literature has
focused on the implied side which naturally requires some form of modelling to
link corporate bond prices and credit risk.

This paper reviews the development in credit risk models. The review is not
exhaustive in any sense given the vastness of the literature available. The next
section discusses the main types of credit risk models that exist. We then have a
section on the basics of bond pricing and follow up with a more detailed discussion
about the main types of credit risk models. We finish off with a brief discussion
of dependence modelling in credit risk which is required when dealing with credit
derivatives which have exposures to multiple names in a credit portfolio.
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2 Introduction to credit risk models

There are two main types of credit risk models:

1. Structural models and

2. Intensity based models.

We start off with a discussion of structural models which preceded intensity based
models. The bulk of this paper deals with intensity based models. We also set
up a general calibration approach for intensity based models. In the course of the
review we briefly discuss the issue of recovery in the event of credit default.

The earliest structural form models are based on Merton (1974) model. In this
approach, a firm’s default depends on the value of the assets it holds. This implies
that default occurs when the market value of its assets is lower than the value of
its liabilities. The payment to the debtors at the maturity of debt is therefore the
smaller of the face value of the debt or the market value of the firm’s assets. This
basic intuition led to Merton’s formula.

In addition to Merton (1974), Black and Cox (1976), Geske (1977), and Vasicek
(1984) also developed some of the earlier structural form models. These models
try to improve the original Merton framework by relaxing one or more of the
unrealistic assumptions. Despite the improvements these models have limitations
when it comes to practical application. One reason for this is due to the unrealistic
assumption that defaults happen at the maturity of the debt as in the original
Merton framework. Another simplifying but unrealistic assumption is that the
risk free term structure is flat.

To overcome the drawbacks mentioned above, more sophisticated structural
form models were developed which assume that a firm may default any time
between the issuance and maturity of the debt. Short-term interest rates were
modelled stochastically. In this scenario, the default occurs whenever the market
value of the firm breaches a predetermined barrier. These structural form mod-
els include Kim, Ramaswamy and Sundaresan (1993) and Longstaff and Schwartz
(1995). However, while these later structural form models provided some improve-
ments over the earlier models, they still perform poorly in empirical analysis. For
example the firm’s market value still needs to be estimated, however not all the
firm’s assets have observable market values. In addition, these models do not take
into account credit rating changes for risky corporate debt of the firms.

The intensity based models, or reduced form models as they are also known
avoid these two problems by design. In these models, the time of bankruptcy is
modelled as an exogenous event. This approach is advantageous for two reasons.
First, it allows exogenous assumptions to be imposed only on observables. Second,
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it can easily be modified to include credit rating and can thus be used to price
more sophisticated payouts.

Credit ratings are important because they also allow one to make objective es-
timates about the financial health of the firm without requiring information about
its market value. Jarrow, Lando and Turnbull (1997) studied the term structure
of credit risk spreads in a model with credit ratings. By incorporating the credit
ratings, Duffie and Singleton (1999) presented a new approach for modeling the
valuation of contingent claims subject to default and focussed on the term struc-
ture of interest rates for corporate bonds. Their study differed from other reduced
form models by the way they parameterized the losses in case of default. Last but
not least, Duffie (1999) discussed the empirical performance of the reduced form
models and showed that these models may not be useful in explaining the relatively
at or steeper yields for firms with low credit or higher credit risks, respectively.

3 Bond pricing basics

In this section we lay out the basic bond pricing set up that we will be used as
a reference for the rest of this paper. We consider a probablility space (Ω, F,Q)
equipped with the filtration (Ft)t≥0 satisfying the usual conditions of right conti-
nuity and completeness.

1. Q is the risk neutral probability measure. Unless stated otherwise the mod-
elling is carried out under this measure

2. r(t) is the short interest rate.

3. Time to default is τ and survival indicator I(t) := 1τ>t.

4. Default free zero coupon bond (ZCB) prices for all maturities T ≥ t are
B(t, T )

5. Defaultable zero coupon bond (DZCB) prices for all maturities T ≥ t are
B̄(t, T )

6. Absence of arbitrage implies: 0 ≤ B̄(t, T ) ≤ B(t, T ),∀t ≤ T

7. Bond prices must be decreasing non negative functions of maturity with
B̄(t, t) = B(t, t) = 1.

8. B(t, T1) ≥ B(t, T2) > 0 and B̄(t, T1) ≥ B̄(t, T2) > 0 for all t < T1 < T2 and
τ > t

9. At time t all prices of ZCBs and DZCBs with maturities T ≥ t are known.
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10. DZCBs have zero default recovery so

I(t)B̄(t, T ) =


B̄(t, T ), τ > t

0, τ ≤ t

11. Under the Q measure default free interest rate dynamics are independent of
default time.

12. Fundamental relationship under Q:

B(t, T ) = E[e−
∫ T
t r(s)ds.1]

and

B̄(t, T ) = E[e−
∫ T
t r(s)ds.I(T )] = E[e−

∫ T
t r(s)ds].E[I(T )] = B(t, T )E[I(T )]

therefore,
B̄(t, T ) = B(t, T ).P (t, T )

P (t, T ) is the implied probability of survival in [t, T ]

Hence

P (t, T ) =
B̄(t, T )

B(t, T )

and the implied probability of default is

PDef (t, T ) = 1− P (t, T )

If P (t, T ) has a right sided derivative in T , the implied density of default
time is

Q[τ ∈ [T, T + dt|Ft] = − ∂

∂T
P (t, T )dt

Hence if we have ZCB and DZCB prices for all maturities we could construct
a term structure of survival probabilities

13. Conditional survival probability is the probability of survival over [T1, T2] as
seen from t given no default at time T1

P (t, T1, T2) =
P (t, T1)

P (t, T2)
, t ≤ T1 ≤ T2

4



14. Implied hazard rate is defined as conditional probability of default per unit
time 4t at time T as seen from tine t < T ,

1

4t
PDef (t, T, T +4t) =

1

4t
(1− P (t, T, T +4t))

Discrete implied hazard rate of default over [T, T +4t] as seen from t is

H(t, T, T +4t) =
1

4t
PDef (t, T, T +4t)
P (t, T, T +4t)

=
1

4t
(

P (t, T )

P (t, T +4t)
− 1)

Continuous implied hazard rate is defined as:

h(t, T ) = lim
4t→0

H(t, T, t+4t) = − 1

P (t, T )

∂

∂T
P (t, T )

15. Forward rate for default bonds are defined as:

F̄ (t, T1, T2) =
B̄(t, T1)/B̄(t, T2)− 1

T2 − T1

whereas defaultable instantaneous continuously compounded forward rates
for T as seen from t are

f̄(t, T ) = lim
4t→0

F̄ (t, T, T +4t) = − ∂

∂T
logB̄(t, T )

16. The conditional probability of default per time interval [T1, T2] is the spread
of defaultable over default free forward rates discounted by the defaultable
forward rate:

PDef (t, T1, T2)

T1 − T2

=
F̄ (t, T1, T2)− F (t, T1, T − 2)

1 + (T2 − T1)(F̄ (t, T1, T2)

=
B̄(t, T2)

B(t, T1)
(F̄ (t, T1, T2)− F (t, T1, T2))

The discrete implied hazard rate of default is given by the spread of default-
able over default free forward rates discounted by the default free forward
rate:

H(t, T1, T2) =
F̄ (t, T1, T2)− F (t, T1, T − 2)

1 + (T2 − T1)(F (t, T1, T2))
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=
B(t, T2)

B(t, T1)
(F̄ (t, T1, T2)− F (t, T1, T2))

The (continuous) implied hazard rateof default at time T > t as seen from
time t is given by the spread of the defaultable over the default free contiu-
ously compounded forwrd rates:

h(t, T ) = f̄(t, T )− f(t, T )

17. Recovery conventions: So far we have assumed that in the event of default,
bond investors loose all their investment. However there is some kind of
recovery on default given debt seniority. For modelling purposes the following
recovery conventions can be considered:

(a) Constant recovery (recovery of face value). Let R ∈ [0, 1] be the con-
stant amount that is recoverable on default. Then the DZCB has value

B̄(t, T ) = E[e−r(T−t)(1τ>T +R(1τ≤T ))]

= B(t, T )−B(t, T )(1−R)P [τ ≤ T ]

This is equal to the value of ZCB minus the value of the expected default
loss

(b) Equivalent recovery (recovery of an equivalent default free bond). Let
R ∈ [0, 1] be the recovery at default of a constant fraction of an equiv-
alent ZCB

4 Structural form models

In this section we look at structural form models in more detail. In credit risk
modeling, this approach is also known as the firm value approach since a firm’s
default is driven by the value of its assets. It was inspired by the 1970s Black-
Scholes-Merton methodology for financial option pricing. Two classic structural
form models we discuss here are the Merton model (Merton, 1974) and the first-
passage-time model (Black and Cox, 1976).

As mentioned earlier, the Merton model assumes that default occurs at the
maturity of the debt if value of the firms assets are lower than the face value. Let
D be the debt level with maturity date T , and let V (t) be the value of the assets
following a geometric Brownian motion:

dV (t) = µV (t)dt+ σV (t)dW (t)
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with drift µ, volatility σ and the standard Wiener process W (t). Using Ito’s lemma
it can be shown that,

V (t)

V (0)
= exp(µ− 1

2
σ2)t+ σWt ∼ Lognormal((µ− 1

2
σ2)t, σ2t)

Given this relationship we can evaluate the default probability P (V (T ) ≤ D).
The notion of distance-to-default facilitates the computation of conditional

default probability. Given the sample path of asset values up to t, one may first
estimate the unknown parameters in geometric brownian by maximum likelihood
method. According to Duffie and Singleton (2003), let the distance-to-default X(t)
be defined by the number of standard deviations such that logVt exceeds logD, i.e.

X(t) = (logV (t)− logD)/σ

X(t) is thus a drifted Wiener process of the form

X(t) = c+ bt+W (t), t ≥ 0

with

b =
µ− σ2/2

σ

and

c =
logV (0)− logD

σ

Consequently, the conditional probability of default at maturity date T is

P (V (T ) ≤ D|V (t) > D) = P (X(T ) ≤ 0|X(t) > 0) = Φ(
X(t)− b(T − t)√

(T − t)
)

where Φ(.) is the cumulative normal distribution function
The first-passage-time model by Black and Cox (1976) extends the Merton

model so that the default event could occur as soon as the asset value reaches a
pre-specified debt barrier. V (t) hits the debt barrier once the distance-to-default
process X(t) hits zero. Given the initial distance-to-default c = X(0) > 0, the
first-passage-time τ is defined as

τ = inf [t ≥ 0 : X(t) ≤ 0]

τ follows the inverse Gaussian distribution. Schrodinger (1915) and Smoluchowski
(1915) were the first to introduce the Inverse Gaussian distribution for first hitting
time in a system where the particles follow a Brownian motion. Since then the
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Inverse Gaussian has been studied extensively by many authors. Consequently,
the probability density of τ here is given by

f(t) =
c√
2π
t−1.5exp[−(c+ bt)

2t
], t ≥ 0

The survival function S(t) is defined by P (τ > t) for any t ≥ 0 and is given by

S(t) = Φ(
c+ bt√

t
)− e−2bcΦ(

−c+ bt√
t

)

The hazard rate λ(t), also called the conditional default rate, is defined by the
instantaneous rate of default conditional on the survivorship,

λ(t) = lim
4t→0

1

4t
P [t < τ < t+4t|τ ≥ t)] =

f(t)

S(t)

Using the inverse Gaussian density and survival functions, the form of the first-
passage-time hazard rate is:

λ(t, c, b) =

c√
2πt3

exp[− (c+bt)2

2t
]

Φ( c+bt√
t

)− e−2bcΦ(−c+bt√
t

)

This is one of the most important forms of hazard function in structural ap-
proach to credit risk modeling.

5 Intensity Models

Structural models are based on economic arguments and defaults are modelled
as fundamental firm variables. Intensity based models, also referred to as reduced
form models do not take fundamental economic arguments into account but model
defaults as exogenously driven events. For example one type of model assumes
defaults follow a Poisson process. This leads to better tractability and some claim
a better empirical performance.

5.1 Poisson process

Let N(t) be a Poisson process with intensity λ. It is hence an increasing process in
the integers 0,1,.....,n, where T1, ..., Tn denote the jump times in the process. The
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process increments N(Ti+1)−N(Ti) are indepedent and

P [N(T )−N(t) = n] =
λn

n!
(T − t)nexp[−λ(T − t)]

for all 0 ≤ t ≤ T
In the intensity based approach the default time is set equal to the first jump

time of the Poisson process N . Thus τ = T1 is exponentially distributed with
intensity parameter λ and the default probability is given by

F (t) = P [τ ≤ t] = 1− e−λt

The intensity is the conditional default arrival rate given no default:

lim
h→0

1

h
P [τ ∈ (t, t+ h)]|τ > t] = λ

Let f denote the density of F hence

λ =
f(t)

1− F (t)

Survival probability for the Poisson process is

P surv(0, T ) = e−λT

The hazard rate:

H(t, T, T +4t) =
1

4t
(eλ4t − 1),

h(t, T ) = λ

The hazard rate which is equal to the spread of the DZCB over the ZCB for the
relevant term does not depend on time here. This means that the term structure of
credit spreads in flat for the Poisson process case. This is clearly unrealistic given
the empirical evidence and hence we need more sophisticated intensity models to
model the term structure of credit spreads.

5.2 Inhomogenous Poisson process

The simple Poisson process N can be generalised to have time varying intensities
λ(t). The process increments N(Ti+1)−N(Ti) are indepedent and

P [N(T )−N(t) = n] =
1

n!
(

∫ T

t

λ(s)ds)nexp[−
∫ T

t

λ(s)ds]
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The probability of default is then given by

P [τ ≤ t] = 1− P [N(t) = 0] = 1− e−
∫ t
0 λ(s)ds

For the inhomogenous Poisson process,

B̄(t, T ) = B(t, T )e−
∫ T
t λ(s)ds

so we can fit a term structure of defaultable bond prices. The continuously com-
pounded yield spread of this bond over the equivalent defalt free bond is

1

T − t

∫ T

t

λ(s)ds

Examples of how λ can be defined:

1. Constant: λ(t) = λ for all t (the homogeneous Poisson case)

2. Linear: λ(t) = a+ bt

3. Piece-wise constant: λ(t) = a1 + a21t≥t1 + a31t≥t2 + .... The parameters must
be chosen such that λ(t) ≥ 0 for all t.

5.2.1 Calibration setup

In this section we set up a calibration example where the Intensity λ is boot-
strapped. This set up is quite generic and is based on the discussion by Giesecke
(2002)

Assuming constant rate r > 0 and zero recovery rate for a DZCB maturing at
T we get

B̄(t.T ) = E[e−
∫ T
t r(s)ds.I(T )] = E[e−

∫ T
t r(s)ds].E[I(T )] = B(t.T )E[I(T )] = e−(r+λ)(T−t)

In order to make the modelling more realistic we calibrate a piece-wise constant
intensity model to market prices of defaultable bonds hence

λ(t) = a1 + a21t≥t1 + a31t≥t2 + ....

Suppose we have similary rated (for example AA rated) DZCBs with maturities
T1 < T2 < .... < Tn with respective price quotes Q1;Q2; ......;Qn. We thus have
have

Qie
rTi = P [τ > Ti] = e−

∫ Ti
0 λ(s)ds
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The coefficients can thus be bootstrapped and we can estimate a1 from Q1, a2

from Q2, and so on. For example suppose n = 3 and Ti = i years. We thus have
the following calibration setup

Q1e
r = e−

∫ 1
0 a1ds = e−a1

Q2e
2r = e−

∫ 2
0 (a1+a21s≥1)ds = e−2a1−a2

Q3e
3r = e−

∫ 3
0 (a1+a21s≥1)+a31s≥2)ds = e−2a1−a2

allowing us to compute first a1, then a2, and afterwards a3. Now the piece-wise
constant intensity model is fully calibrated to AA rated DZCB prices.

Since λ for the inhomogenous case depends only on time this is not stochastic.
To incorporate stochasticity in spreads we look at implementing a Cox process to
model the intensity. The Cox process is a generalisatiion of the Poisson process.

5.3 Cox process

A Cox process N with intensity λt is a generalisation of the inhomogenous Poisson
process where the intensity is a random process, with the restriction that condi-
tional on the realisation of λ, N is an inhomogenous Poisson process λ can be
defined as :

dλ(t) = µλ(t)dt+ σλ(t)dW (t)

where W (t) is the standard Brownian motion. The conditional and unconditional
default probabilities are given by

P [τ ≤ t|λ] = 1− P [N(t) = 0|λ] = 1− e−
∫ t
0 λsds

P [τ ≤ t] = E[P [τ ≤ t|λ]] = 1− E[e−
∫ t
0 λsds]

In finance, stochastic intensity based models are mostly the term-structure
models borrowed from the literature of interestrate modeling. An obvious choice
is to model the (stochastic) intensity using the one factor Cox-Ingersoll-Ross (CIR)
model which is a positive mean reverting model. λ is defined as follows under CIR

dλ(t) = κ(θ − λ(t))dt+ σ
√
λ(t)dWt

λ(t) has a non-central chi-squared distribution where the probability density
f(λ)) is defined as:

f(λ) =
fχ2(λ

s
, ν, δ)

s

where ν is the known degrees of freedom, δ is the non centrality parameter and s
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is a scalar and:

ν =
4θκ

σ2

δ =
4κeκtλ(0)

σ2(1− e−κt

s =
σ2(1− e−κt)

4κ

The mean and variance are:

E[λ(t)] = λ(0)e−κt + θ(1− e−κt)

V ar[λ(t)] = λ(0)
σ2

κ
(e−κt − e−2κt) + θ

σ2

2κ
(1− e−κt)2

The term-structure models provide straightforward ways to simulate the future
default intensity for the purpose of predicting the conditional default probability.
However, the models lack fundamental interpretation of the default events. Thus
default intensities deserve more flexible and meaningful forms and one way is to al-
low for dependence of default intensity on state variables z(t) (e.g. macroeconomic
covariates) through a multivariate term-structure model for the joint distribution
of (λ(t), z(t)). This approach essentially presumes a linear dependence in the dif-
fusion components, e.g. by correlated Wiener processes.

6 Dependence modelling

The issue of default correlation embedded in credit portfolios has drawn intense
discussions in the recent credit risk literature, in particular given the recent credit
crisis. Among other works, Das, et al. (2007) performed an empirical analysis of
default times for U.S. corporations and provided evidence for the importance of
default correlation. Default correlation can be effectively characterized by mul-
tivariate survival analysis. There are broadly two different approaches to model
dependence:

1. correlating the default intensities through the common covariates,

2. correlating the default times through the copulas.

The first approach is better known as the conditionally independent intensity
based approach, in the sense that the default times are independent conditional on
the common covariates. Examples of common covariates include the market-wide
variables, e.g. the GDP growth, the short-term interest rate.
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The copula approach to default correlation considers the default times as
the modeling basis. A copula C : [0, 1]n → [0, 1] is a function that is used
to formulate the multivariate joint distribution based on the marginal distribu-
tions. By Sklar’s theorem, for a multivariate joint distribution, there always
exists a copula that can link the joint distribution to its univariate marginals.
Therefore, the joint survival distribution of(τ1, ..., τn) can be characterized by
Sjoint(t1, ...., tn) = C(S1(t1), ...., Sn(tn)), upon an appropriate selection of copula
C. There is more detail on copulas in the appendix. In practice when modeling
credit portfolios, it is important to check the appropriateness of the assumption
behind the copula approach. The collapse of the CDO market was an obvious
example of an oversimplification of copula modelling with reliance on the simple
Gaussian copula to model dependence among multiple essentially heterogeneous
credit exposures.

7 Conclusion

The structural approach is economically sound, however, it implies empirically less
plausible spreads. The intensity based approach is adhoc, tractable, and empiri-
cally plausible. Structural and intensity based approach are not consistent as in
the usual structural approach an intensity does not exist (this is due to the predica-
bility of defaults). By introducing incomplete information in a structural model,
both approaches can be unified to an extent. This will provide some economic
underpinnings for the ad hoc nature of the intensity based framework.
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8 Appendix: Copulas

Dependence between random variables is indicated by their joint distributions.
Correlations measure linear dependencies, and thus correlations are not effective
when working with nonlinear dependencies. Thus there is need of knowledge of
the complete joint distribution. However, deriving joint distributions are generally
next to impossible without heavy assumptions. At best one can hope to approxi-
mate marginal distributions.

Copulas are functions for coupling the marginal distributions to joint distribu-
tions. Traditional multivariate analysis combines dependence and joint distribu-
tion, whereas copulas separate dependence and marginal distributions. We assume
that

F1(x) = P [X ≤ x]

and
F2(y) = P [Y ≤ y]

are cumulative distribution functions (CDFs) of the random variables X and Y
and

F (x, y) = P [X ≤ x, Y ≤ y]

is their joint distribution. According to the theory under fairly general conditions
there is a unique function C called a copula, such that

F (x, y) = C(F1(x), F2(y))

Thus if we know C the joint distribution F (x, y) can be derived from the marginal
distributions F1(x) and F2(x). Denoting the probabilities s = F1(x) and t = F2(y),
we can (usually) take x = F−1

1 (s) and y = F−1
2 (t). Then, by Sklar’s theorem we

have
F (x, y) = F (F−1

1 (s), F−1
2 (t)) = C(s, t)

In essence if we have the marginal distributions and the copula we can get to the
joint distribution. Common examples of copulas are:

1. Gaussian: CΣ(x1, x2, ..., xn) = ΦΣ(Φ−1(x1), ....,Φ−1(xn))

2. Student-t: CΣ,ν(x1, x2, ..., xn) = ΘΣ,ν(Θ
−1
ν (x1, ..., xn))

3. Archimedean: CΨ(x1, x2, ..., xn) = Ψ−1(Σn
i=1Ψ(xi))

where Σ ∈ Rnxn,ΦΣ denotes the multivariate normal distribution, ΘΣ,ν denotes
multivariate Student-t distribution with degrees of freedom ν, and Ψ is the gener-
ator of Archimedean copulas
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